SEGMENTED MOB MEETING NOTES MELVILLE CLUBROOMS Thursday 5 October, 2023

Present - Syd Harvey, Ian Hamilton, Noel Moyes, Aiton Sheppard, Jon Brain, Tania Emmerson, Mike Phillips and Silvio Moriconi.

Apologies - Ray Dallin and John Townsend.

WELCOME

Aiton only arrived at 1010 by which time Syd had done his welcome and general waffle ensued.

BUTTERFLY VESSEL PROJECT

Tania has made up the rings for her one which is a work in progress.

SOCCER BALL PROJECT

Noel and Silvio have commenced theirs. The photo is below. Noel had trouble with cutting his pieces and believes the templates are not accurate - he will have to fill in and hide the gaps which are evident in the photo.

Syd is also in the process of making his soccer ball which is illustrated in the photo overleaf. Syd used his disc sander at an angle of 20.8 degrees to sand accurately to the template lines.

The YouTube video to watch is Andrew R Conti Snr, "Soccerball Bead Ball". A table saw jig may be found at 'Hexagon Cutting Jig $2.0 \mid$ Cut a Hexagon any Size |Adjustable Table Saw Jig for Cutting Hexagons YouTube'.

DUMMY SHELL PROJECT

Dummy shells 9.75 "X31" shells for Rottnest Island is a project that can be made up from scrap timber. Note for future discussion.

WEBSITE

https://drive.google.com/drive/folders/1ZXKXiCAKthAjxLWn1NCrY9UhL1 xim9Cz

Ian Ludford also has our page set up on the WAWA web page the link to which is https://www.woodturnerswa.org.au/segmenters/

On-line John di Sefano Segment Helper www.johndistefano.com.au

SUGGESTED PROJECTS

1. More hands on demonstrations.
2. Learning to make feature rings. (Basic through to advanced.)
3. Training video suggestions on website or YouTube.
4. Jig designs and specifications to use when preparing, cutting, assembling, or turning your project.
5. A team project from start to finish at meetings with all members being involved. This will then be sold for Seggie fund raising. Tania's artistic challenge may result in a suitable item for this.

AROUND THE TABLE

SYD - advised that Ross has purchased the new sander from Carbatec. After the meeting we went out to assemble it.

AITON - went to Carbide Tools, Wangara, where he had band saw blades sharpened and found BioSteel 8/10/12 tpi bandsaw blades, similar to those used by Trev.
Aiton will also be an apology for the Sunday 15 October meeting.

2023 MEETING DATES

OCTOBER -Sunday 15, and Thursday 26.
NOVEMBER - Sunday 5, Thursday 16 and Sunday 26.
DECEMBER - Sunday 3. Noel is arranging the annual wind-up, to be held at "The Seventh Avenue" pub in Midland. Butterfly Vessel project to be completed and brought along for show \& tell and most popular vote.
\|Dg
dəOOOS
o buluin

$M=$

 bined when I turned my first soc-cer ball. Since then I have made others
and they have always attracted people's and they have always attracted people's

The Real Ball
Before turning a soccer ball from Before turning a soccer ball
wood, it is necessary to consider the
design of a real soccer ball.

The balls come in different sizes. The drawings provided here will produce a
ball with a diameter of approximately 240 mm , ie. a No.5 ball which is the size
used by adult and teenage players. Each ball consists of 20 hexagons and

The Turned Ball

The Choose a light coloured timber for
your hexagons and a dark one for your your hexagons and a dark one for you
pentagons. For the hexagons I've used pentagons. For the hexagons I've used
woods such as Tasmanian Oak, Maple and Rock Maple; for the pentagons I've er timber is likely to be more expensive Forming the Blank Forming the Blank
Using the template provided in Fig. 1 a ,
mark out the 20 hexagons on $18-19 \mathrm{~mm}$ mark out the 20 hexagons on $18-19 \mathrm{~mm}$
thick stock. If you wish you can photothick stock. If you wish you can photober, as the paper will be removed during
the turning process. Cut out the hexagons $2-3 \mathrm{~mm}$ oversize. The cutting can be done on a bandsaw
scrollsaw or with a jigsaw. Set up your disc sander with the work-
table tilted 20.8° down from the horizon-

 tial to get this angle to within a tenth of a
degree, but the more accurate you are the
 It t
It took me a while to realise how I
could work out the required angles. The solution came when I constructed a fullsized ball from card pentagons and hexaangle. The required chamfer was then half
the internal angle, ie. $\left(360^{\circ}\right.$ - external the internal angle, ie. $\left(360^{\circ}\right.$ - external
angle) $\times 0.5$.

Glue the ball together. I used a good ther alternatives you may prefer. Use | 0.1 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 5 |
| 5 |
| 5 |
| \vdots |
| \vdots |
| \vdots |

'panว Kןnf s! an!saype әчł иәуM

How to Determine Bandsaw Blade Length

Bandsaw blades come in a wide variety of lengths, widths, thicknesses, and tooth configurations. In order to determine bandsaw blade length for your saw, please reference our Bandsaw Blade Lengths \& Manufacturers page for a list of common saws and sizes. If you cannot find your saw model or are unable to locate a manual, Detroit Band Saw can teach you how to determine bandsaw blade length. You will need a tape measure, pencil/pen, and a clear path or floor space. Just follow these 5 steps.

Step 1

Step 2

Place a piece of tape on the floor and make a mark to determine your starting point.

Step 3

Roll the blade in a straight line until the mark you previously made comes back and hits the floor.

Step 4

Make a second mark on a piece of tape.

Step 5

Measure the distance between your two marks on the floor. You now know the length of your bandsaw blade!

If you do not have an existing blade, there is a mathematical equation to help determine saw blade length in inches.

1. Fix the pulleys or wheels into working position
2. In inches, determine the distance from the center hub on the upper and lower band wheels (later referred to as "C")
3. In inches, determine the radius of each wheel. The radius is the measurement from the center hub to the outside of the wheel (later referred to as "R1 and R2")
4. Apply the following formula: $(R 1 \times 3.1416)+(R 2 \times 3.1416)+(2 \times C)=$ Saw blade length

How to Select Bandsaw Blade Width \& Teeth Per Inch (TPI) Chart

Bandsaw blade width can determine how straight you can make a cut, how tight a curve (radius) or the shape you can achieve with your bandsaw. The blade width is measured from the tooth tip to the back edge of the blade, as per the example diagram.

TOP TIP: Refer to the machine manufacturer's instructions to determine the minimum and maximum blade widths your machine permits.

CONTOUR (CURVED) CUTS

For cutting curves and radii, the blade should be as wide as the machine permits but still narrow enough so that it can cut the desired shape (radius).

STRAIGHT CUTS

For straight cutting, the blade should be as wide as the machine permits. The wider the blade, the more beam strength it has to promote straighter, more accurate cuts.

Use the chart below to select the correct band width for your project.

EXAMPLE:

You need to cut a radius of $50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ in a piece of timber. The blade width you should select would be a $10 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$ wide bandsaw blade. If required, this blade width selection would allow you to cut a minimum radius of 40 mm (1 $1 / 2^{\prime \prime}$).

Band Saw Blade Teeth Per Inch (TPI) Chart

You must select the correct Teeth Per Inch (TPI) for the thickness of material you are cutting. If the correct TPI is not chosen the blade life will be dramatically reduced. TPI selection is arguably the most important decision when selecting a band saw blade.

The number of TPI defines the pitch of the blade and can vary from 1 to 32 TPI. On some bandsaw blades there are different pitches on the same blade referred to as Vari-Pitch. TPI is measured from gullet to gullet, not tooth tip to tooth tip - this is known as pitch.

The general rule of thumb is:

- For wood and soft materials aim for 3-6 teeth in the workpiece.
- For metals and harder materials aim for 6-24 teeth in the workpiece.

Some things to note:

- Too few teeth may straddle the work and break teeth.
- Too many teeth can cause gullet overload and strip teeth.

Use the bandsaw teeth per inch chart below to select the optimum TPI for your project needs.

Material Thickness

(mm)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{1 8}$	$\mathbf{2 5}$	$\mathbf{3 8}$	50
(Inch) 0.04	0.08	0.1	0.2	0.4	0.7	1.0	1.5	2.0	5.0

Material Thickness								
(mm)	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{1 2 7}$
(nch) 0.08	0.3	0.4	0.6	0.8	1.0	2.0	5.0	10.0

| Material Thickness | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (mm) 2 | 2.5 | 4 | 5 | 7 | 15 | 27 | 50 |
| (nch) 0.08 | 0.1 | 0.15 | 0.2 | 0.3 | 0.6 | 1.06 | 2.0 |

Folding Bandsaw Blades: Simple as One, Two, Three

Hold the blade in front of you with one hand, keeping the teeth pointing away from you.
Wear a glove if you've got one handy.
Put your foot inside the loop and step on the blade, securing it firmly to the floor.
Simultaneously rotate and lower your hand as you hold the top of the blade.
By the time your hand makes three-quarters to one full revolution, the blade will have popped into three coils.

